Selasa, 14 Desember 2010

Barisan dan Deret Aritmatika

Barisan Aritmatika

          (1) 3, 7, 11, 15, 19, ...
          (2) 30, 25, 20, 15, 10,...
Perhatikan bahwa selisih di antara suku-sukunya selalu tetap. Barisan yang demikian itu disebut barisan aritmetika. Selisih itu disebut beda suku atau beda saja dan dilambangkan dengan c.
          Barisan (l) mempunyai beda, b = 4. Barisan ini disebut barisan aritmetika naik karena nilai suku-sukunya makin besar.
          Barisan (2) mempunyai beda, b = -5. Barisan ini disebut barisan aritmetika turun karena nilai suku-sukunya makin kecil.
Suatu barisan U1, U2, U3,....disebut barisan aritmetika jika selisih dua suku yang berurutan adalah tetap. Nilai Untuk menentukan suku ke-n dari barisan aritmetika. perhatikan kembali contoh barisan (l).
        3, 7, 11, 15, 19, ...
Misalkan U1, U2, U3 , .... adalah barisan aritmetika tersebut maka
       U1 = 3 =+ 4 (0)

       U2 = 7 = 3 + 4 = 3 + 4 (1)
       U3 = 11 = 3 + 4 + 4 = 3 + 4 (2)
            ....
       Un = 3 + 4(n-1)
Secara umum, jika suku pertama (U1) = a dan beda suku yang berurutan adalah b maka dari rumus Un = 3 + 4(n - 1) diperoleh 3 adalah a dan 4 adalah b. Oleh sebab itu, suku ke-n dapat dirumuskan
       Un = a + b(n-1)
Barisan aritmetika yang mempunyai beda positif disebut barisan aritmetika naik, sedangkan jika bedanya negatif disebut barisan aritmetika turun.
        U1, U2, U3, .......Un-1, Un disebut barisan aritmatika, jika
        U2 - U1 = U3 - U2 = .... = Un - Un-1 = konstanta
Un = a + (n-1)b = bn + (a-b) → Fungsi linier dalam n

Deret Aritmatika

Seperti telah dibahas sebelumnya, deret adalah bentuk penjumlahan dari suku-suku pada sebuah barisan. Jika U1, U2, U3, ... barisan aritmetika. U1, U2, U3, ... adalah deret aritmetika.
Untuk mendapatkan jumlah n suku pertama dari deret aritmetika, perhatikan kembali deret yang dihasilkan barisan (l ).
      3 +7 + 1l + 15 + 19 + ...
Jika jumlah n suku pertama dinotasikan dengan.Sn maka S dari deret di atas adalah :
Gambar:58.jpg
Perhatikan jumlah 5 suku pertama, S yang diperoleh. Angka 3 pada perhitungan tersebut berasal dari suku pertama, sedangkan l9 adalah suku ke-5. Oleh karena itu, jumlah suku ke-n adalah
Gambar:59.jpg
Jika nilai Un tidak diketahui, kita gunakan rumus Un, barisan aritmetika, yaitu Un = a + (n-1)b, sehingga jumlah n suku pertama adalah
Gambar:60.jpg
jumlah n suku pertama dari suatu deret aritmetika yang suku pertamanya a dan beda b adalah
Gambar:61.jpg
Untuk memudahkan perhitungan Sn suatu deret aritmetika, perhatikan hal-hal berikut. a. Jika diketahui suku pertama a dan beda b, gunakan rumus Gambar:62.jpg b. Jika diketahui suku pertama dan suku ke-n,gunakan rumus Gambar:63.jpg

Tidak ada komentar:

Posting Komentar